A rough Marcinkiewicz integral along smooth curves
نویسندگان
چکیده
منابع مشابه
Rough Marcinkiewicz Integral Operators
We study the Marcinkiewicz integral operator M f(x) = ( ∫∞ −∞ | ∫ |y|≤2t f (x − (y))(Ω(y)/|y|n−1)dy|2dt/22t)1/2, where is a polynomial mapping from Rn into Rd and Ω is a homogeneous function of degree zero on Rn with mean value zero over the unit sphere Sn−1. We prove an Lp boundedness result of M for rough Ω. 2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.
متن کاملRough Marcinkiewicz Integrals On Product Spaces
In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.
متن کاملMarcinkiewicz integrals along subvarieties on product domains
Stein proved that ifΩ∈ Lipα(Sn−1), (0<α≤ 1), then μΩ is bounded on Lp for all 1<p ≤ 2 [18]. Since then, the study of the Lp boundedness of μΩ under various conditions on the function Ω has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among others). In particular, Chen et al. in [8] studied the Lp boundedness of μΩ under the following condition on the function Ω which was intro...
متن کاملOn the L Boundedness of Rough Parametric Marcinkiewicz Functions
In this paper, we study the L boundedness of a class of parametric Marcinkiewicz integral operators with rough kernels in L(log L)(Sn−1). Our result in this paper solves an open problem left by the authors of ([6]).
متن کاملBoundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
*Correspondence: [email protected] 1School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China Full list of author information is available at the end of the article Abstract In this note we establish the Lp boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces, which improve and extend some previous results. The main ingredient is to presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.06.84