A rough Marcinkiewicz integral along smooth curves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough Marcinkiewicz Integral Operators

We study the Marcinkiewicz integral operator M f(x) = ( ∫∞ −∞ | ∫ |y|≤2t f (x − (y))(Ω(y)/|y|n−1)dy|2dt/22t)1/2, where is a polynomial mapping from Rn into Rd and Ω is a homogeneous function of degree zero on Rn with mean value zero over the unit sphere Sn−1. We prove an Lp boundedness result of M for rough Ω. 2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.

متن کامل

Rough Marcinkiewicz Integrals On Product Spaces

In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.

متن کامل

Marcinkiewicz integrals along subvarieties on product domains

Stein proved that ifΩ∈ Lipα(Sn−1), (0<α≤ 1), then μΩ is bounded on Lp for all 1<p ≤ 2 [18]. Since then, the study of the Lp boundedness of μΩ under various conditions on the function Ω has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among others). In particular, Chen et al. in [8] studied the Lp boundedness of μΩ under the following condition on the function Ω which was intro...

متن کامل

On the L Boundedness of Rough Parametric Marcinkiewicz Functions

In this paper, we study the L boundedness of a class of parametric Marcinkiewicz integral operators with rough kernels in L(log L)(Sn−1). Our result in this paper solves an open problem left by the authors of ([6]).

متن کامل

Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces

*Correspondence: [email protected] 1School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China Full list of author information is available at the end of the article Abstract In this note we establish the Lp boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces, which improve and extend some previous results. The main ingredient is to presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.06.84